The LEM exponential integrator for advection-diffusion-reaction equations ⋆

نویسندگان

  • Marco Caliari
  • Marco Vianello
  • Luca Bergamaschi
چکیده

We implement a second-order exponential integrator for semidiscretized advectiondiffusion-reaction equations, obtained by coupling exponential-like Euler and Midpoint integrators, and computing the relevant matrix exponentials by polynomial interpolation at Leja points. Numerical tests on 2D models discretized in space by Finite Differences or Finite Elements, show that the Leja-Euler-Midpoint (LEM) exponential integrator can be up to 5 times faster than a classical second-order implicit solver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

The ReLPM Exponential Integrator for FE Discretizations of Advection-Diffusion Equations

We implement an exponential integrator for large and sparse systems of ODEs, generated by FE (Finite Element) discretization with mass-lumping of advection-diffusion equations. The relevant exponentiallike matrix function is approximated by polynomial interpolation, at a sequence of real Leja points related to the spectrum of the FE matrix (ReLPM, Real Leja Points Method). Application to 2D and...

متن کامل

Asynchronous discrete event schemes for PDEs

A new class of asynchronous discrete-event simulation schemes for advectiondiffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experim...

متن کامل

Space-time radial basis function collocation method for one-dimensional advection-diffusion problem

The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006